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Gravitational Interaction Between Moving Objects
in Terms of Spatial Gravitational Fields

W. D. Flanders! and G. S. Japaridzé->
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Analyzing two simple experimental situations we show that from Newton’s law of
gravitation and Special Relativity it follows that the motion of particle in an external
gravitational field can be described in terms of effective spatial fields which satisfy
Maxwell-like system of equations and propagate with the speed of light. The description
is adequate in a linear approximation in gravitational field and in a first-orde/u?.

KEY WORDS: Post-Newtonian approximation; classical field theory; Newtonian
gravity; Special Relativity; linearized gravitational field.

1. INTRODUCTION

In this paper we discuss how the gravitational interaction for an object with
nonzero velocities can be described in terms of effective spatial fields. Namely, we
will show that the force acting on a patrticle that moves in an external gravitational
field is given by the expression

F=mg+mv x B, Q)
where( is the gravitational field accounting for Newton’s gravitational law for
a particle at rest (see below (4)) and the effective figldappearing due to the

Special Relativity effects like the magnetic field in electrodynamics, satisfies the
relation (below we assume thgtfield is time independent)

curl B=—ng, ie. fédi:-nféd/i 2)

In(2) q_5 is the flow of the unit of mass per unit of time adddanddA stand for the
line and area elements.
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We will show that

47 G
=2 N A3)

whereGy =~ 6.66 x 10~ Nm? kg2 is a Newton’s constant arais the speed of
light. The small value of #Gy/c? explains why, in contrast to their electromag-
netic counterparts, “gravimagnetic” effects causedsbgre weak for moderate
values of masses and velocities.

We consider the case of a weak gravitational field and neglect higher powers of
v2/c?. Interms of General Relativity we would say that the curvature of space time
nearly vanishes, so that Special Relativity can be applied with accuraayd ~
1, goo being the 00 component of the metric tenggar. Whengg « 1 the curvature
is almost zero, but nearly vanishing deviation from the flathess of space-time
still leads to noticeable acceleration, described with accuraay’ by Newton’s
gravitational law (Dirac, 1976; Landau and Lifshitz, 1962).

In Section 2 we consider twgedankerexperiments with the point particle
and mass flow. We will evaluate comparing the result of the first experiment
with the expression (1) and then show that the results for the Experiment 2 are
described by (1) with the value gfobtained from the analysis of Experiment 1.
We derive equations for the fieldsand 3 that are similar to Maxwell’s equations
for the electromagnetic field.

In Section 3 we summarize our results and discuss the limitations of the
suggested approach.

The concept of spatial gravitational forces modelled after the electromagnetic
Lorentz force has a long history and many names associated with it (Bel, 1959;
Bonnor, 1995; Braginskgt al., 1977; Cataneo, 1958; Damaetral,, 1991; Dunsby
etal, 1997; Holzmuller, 1870; Jantzenal, 1990; Maartenst al,, 1997; Mashoon
etal, 1997; Tisserand, 1872; Zel'manov, 1956). In this paper we consider spatial
gravitational fields in the most elementary way and show that even in such a
simplified scheme gravitational phenomena can be analyzed with the accuracy
o(v?/c?) without invoking equations of General Relativity.

2. EXPERIMENTS WITH POINT PARTICLE AND MASS FLOW
AND THE FIELD EQUATIONS

2.1. Description of Experiments

In this section we consider twgedankemexperiments: 1) point particle mov-
ing between two infinite pipes that carry a mass flow, and 2) one pipe, moving
toward the particle. We analyze these two experiments using only Special Rela-
tivity and Newton’s gravitational law

= mimz
Fio=CGn—3T12 4)
K
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The set up for Experiment 1 is two infinite, straight, massless pipes on a
plane and a point particle between them. Each of the pipes is parallelyaths,
crossing thex axis atx = +b, and each carries a fuild that flows with velocity
relative to the pipe. The fluid in the left pipe moves in the posiyivirection, the
fluid in the right pipe moves in the negatiyedirection. The linear density (we
neglect the pipe cross-section) of fluid at rest i he particle with mass moves
alongy axis with the velocityv, = v.

Let us calculate the net forde acting on the particle in the frames of refer-
ence where particle is (momentarily) at rest—reference frame comoving with the
particle. In this frame of reference the particle lies between two continuous mass
flows with the linear densities ando 1, whereyy is a Lorentz factor accounting
the relativistic length contraction

V2 -1/2
v ) ®
In (5), V = ——24__ is the velocity of a fluid from a right pipe in this frame of

1+ .
reference. The ¥brcces exerted from the pipes have only @mponents and the

straightforward calculation leads to the following expression for the force acting
on a particle in the frame where particle is at rest:

. 2Gymo 4Gymo sz (6)
b b ¢?

To obtain (6) we use expression (4), e.g. the force exerted from the left flow (second
term of (6)) is

F

(w -1~

+oo Gnmob mo
N v )
The magnitude of the force exerted from the right flow is given by (7) using
substitutionrs — o v (since we consider infinite pipes there are no any boundary
effects caused by the endpoints of fluid) and the final result is the expression (6).
When the particle is at rest relative to the flow the net force is zero, as it
follows from (6). Below we will show tha8 ~ v; (see (10)) and that expression
(6) is reproduced by the-dependent term of the Eq. (1).
In the second experiment, the particle with coordinates/(z) is at rest
and the pipe oriented along axis moves toward the particle with the velocity
V = (—Vp, 0, 0). The fluid with density moves with the velocity; = (0, —vs, 0)
relative to the pipe.
We omit lengthy but straightforward calculations and report only the results
for a—the acceleration of the particle:

o — dve  2Gnox v?
“Tdt T (x2+22) 2c2
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a — % __ 2GNOoVpViX
YT odt (2 + )

dv, 2Gnoz Vi VP
ag=—n~—— 1+ 4+ L), 8
T, (x2+22)< toe T o2 ®

wherex is y, times the distance from the pipe to the particle in the reference
frame where particle is at rest. Expressions (8) are obtained by integration similar
to that (7) which is based on (4), taking into account the length contraction of a
small element of fluid with massdy and neglecting higher orders wf/c?.

2.2. Evaluation ofnp From the Results of Experiment 1

To obtain the value of, appearing in the relation (2) itis necessary to consider
the problem in a reference frame where particle has a nonzero velocity. The sim-
plest solution is provided by the original frame of reference described previously
when particle and the fluid from a left pipe move alongxis with velocitiesv,
andv; correspondinglyy, = vt, and the fluid from the right pipe moves with the
velocity —v;.

From the symmetry arguments it follows that the net figid zero (particle
is between two sources with the same linear densitigls so only the second
term of (1) contributes. According to (1) the force acting on the particle is directed
alongx axis and its magnitude is1,B. This expression already assumes that
BVt = BVp = 0, i.e.Bis perpendicular to the pipes just as the magnetic field given
by Ampere’s circuital law is perpendicular to the current (Landau and Lifshitz,
1962). In Experiment 1 we havg/at = 0 (pipes are at rest), so we can use (2) to
calculate the value d8. Particle is at rest relative to the fluid in the left pipe, so it
“feels” field B generated only by the pipe from the right. Using the integral relation

(2) and for the relative velocity = —; 2%__ e obtain
+vZ/c
2v
27bB = —noyV =no fvz R 2no Vi, (9)
1+¢
ie.
B~ novi/mtb (20)

and the force acting on a moving particle in the original reference frame will be

(taking into accounty, = vs):

nMoVv#
b

In order to establish the value pfve have to compargE andF—force calculated
in a two reference frames. Reference frames move relative to each other along

F=myB =

(11)
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y axis with velocityV and the force is directed along axis. Thus we need
Lorentz transformations in its vectorial form:

=y (t (Vr)) ; M=y <y_1F —Vt+(1- _1)(Vr)V> (12)

C2
From (12) and the expression for the force
dp _ dmyv) _ s (Vv
at = ar - maATm g

it follows that up to ordew*/c* (let us remind thafF itself is of orderv?/c?) we
haveF = F. Therefore, equating expressions foandF we obtain

1= 22" (140 (Zz)) 14)

2.3. Description of Experiment 2 in Terms ofg and B

E_

(13)

After the value ofp is established we demonstrate that the results for
Experiment 2 are described by (1). To do so, instead of straightforward but lengthy
arguments we assume that whagyat # 0 (in the reference frame used to de-
scribe Experiment 2, the pipe has nonzero velocityg $®now time dependent)
expression (2) is modified as

curIB——zﬁ—w i.e. ?gBdI /(—25—174)) (15)

We will verify that (1) and (15) lead to the same expressions for the force as did
calculation using only Newton’s law and Special Relativity.
The components df can be calculated from (15). Fgwe useg = a with
a given by (8) whereldg/dt = (dg/dx) - (dx/dt), and assume that fields vanish
at infinity. The choicej = & is justified since in the original frame of reference
particle is at rest and its (instantaneous) acceleration is defined dyearti” of
(1). Usingn = 47 Gy/c?, in a leading approximation iw?/c? we obtain
2Gno VsZ
c3(x2 + 22)
. 2Gnovpz
YT T (x2 + )
2GNo ViX
c2(x? + 2?)

X ~

(16)

z ™~

_Now we are in a position to check that Experiment 2 can be described by
F=mg+mv x B.
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When the particle is at rest in the reference frame used to describe Exper-
iment 2,F = mg, which is trivially consistent with the Eq. (8), since we have
definedg = a.

To account the effect caused by thB-term” of (1), we consider the case
when particle in the original frame of reference moves with the nonzero velocity
U = (u, 0, 0). They component of (1) iS5y = mg, — mB,u. Direct substitution
for B, (andgy = ay) results in

2GNO VpVEX 2GNo ViX
Fy=m 0 +p22) Y T ) (17)
To compare (17) with the expression calculated in the framework of Newtonian
approximationfFy = ma,, we need the value @,. From (8), acceleration in case
of i = 0, it follows that when a particle has nonzere= (u, 0, 0), the value of,
can be obtained by substitutiongf + u for v, in (8): v, — v, + u that leads to

2GNo(vp + u)vgx

Fy =ma (v, = Vp+u) = 22 1 ) (18)
As itis clear, (17) and (18) agree.
Next we consider the component. Using (16) foB, we obtain
2Gnoz ViV 2GNoVpz
F,=m m =—-m—— (1+—= + =5 19
2= Mg +muB, x2+22( +2c2+202> Xt ) (19)

Since the particle moves with the velocity= (u, 0, 0) we have, = F,/y,m (see

(13)):

a;~ — (20)

2Gnoz vioov o2 2GNovpz
¢z 2c?

X2 + 72 22 T2z~ T2+ )"

wherey; ! = /1—-u2/c2 ~ 1 - u?/2c2.

Now we have to compare this expression with the oneafdrom (8), cal-
culated from Newton’s law and Special Relativity—acceleration of a particle in
the reference frame comoving with the particle. We rephace> v, + u in the
expression (8) foa, to obtain

2GnoZ Ve V2 vpu w2
aZ(Vp+u)=_)(27_i_22<1+2_Cz+i+ C2+22 (21)

Expression (21) gives the acceleration of the particle in a reference frame moving
along thex axis with velocityv, + u relative to the pipe. On the other hand,
expression (20) corresponds to the acceleration in the reference frame moving
along thex axis with velocityv, relative to the pipe. To compare (20) and (21),
we use (12) to transform acceleration from the reference frame used in (21) to that
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used in (20)a, — a,y,; 2. This transformation introduces the teran?/c? so that
the two expressions for acceleration now agree.

A similar analysis for the case when the velocity of the particle is along the
y axis,u = (0, u, 0) again confirms that the expressier= mg + mv x BB can be
used to describe the motion of a particle in a gravitational field.

2.4. Equations forg and B

Besides Eq. (15) that was postulated (and subsequently verified to describe
Experiment 2 in a self-consistent way) it is possible work out two more relations
for the fieldsB andg.

First of all, from the expressions (16) it follows th&By/9x + dBy/dy +
0B,/0z=0,i.e.

dvB=0 (22)
Next we compare cui andaé/at. For they component we obtain

By 9 < 2GNpVpz ) B 2GNpV;2zX

Y _ (= = 23
ot at \ c2(x2+23) C2(X2 + 72)2 (23)

Straightforward calculation of thecomponent of curdj (as before, we takg = &,
for & see (8)) results in

9% 09, 9 2GnpX 14 v? 9 2Gnpz
3z ax 9z\ (xX2+2?) 2c2 ax \ (x2+2?)

2GNp2zXx V)

N —————, 24
i.e. (curlg)y = —aBy/ot.
Consideration of th& andz components show that the relation
0B
curlg = —— 25
9=—-= (25)

is valid. Also, from the definition off we have divj = 4w Gy p wherep is aregular
three-dimensional density. _
Summarizing, the equations fgrand B are as follows:
div g = 47 Gyp, curlg = —aB/at
.o 1 39 4r Gy -
divB =0, curlB= == —
c? at c?

wherep is the mass den5|ty anpl is the mass density flow. In case of Experi-
ments 1 and 2 qb oVs.

(26)
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_ Itis now straightforward to obtain the wave equations for the gase0,
j=0

19§ ,. 1028 -

—— = , —— =V°B, 27
2oz V9 R TE @7)
i.e. free waves propagate with speed of light.

3. DISCUSSION

We have demonstrated that the gravitational force acting on a point particle
with massm and velocityv is given by the expression

F=mg+mixB (28)

with g andB satisfying the system of equations similar to the Maxwell equations.
The approximation we used is that gravitational field is weak enough so that
space-time is approximately euclidean and the velocities are small enough so that
higher powers o¥?/c? are negligible. In the framework of this approximation the
force obtained from Newton’s law (4) and the Special Relativity is described by
(28), i.e. motion of particle is given by an expression similar to the Lorentz force
for a charged particle in an external electromagnetic field. The similarity is caused
by neglecting the effects of self-interaction for gravitational field, corresponding
to a nonlinearity of Einstein’s equations. In case of classical electromagnetism the
linear approximation to field equations is well justified in a sense that phenomena
with characteristic action substantially exceedin@ being the Planck’s constant,
are described by Maxwell's and Lorentz’s equations (Landau and Lifshitz, 1962)
and in electromagnetic phenomena quantum effects manifest themselves earlier
than effects caused by a nonlinear corrections to Maxwell’s equations. Intuitively
it becomes clear when one compares electron’s Compton wave lgngth/mc
and its classical electromagnetic radiys= €2/mc: from the value of the ratio
rq/Te = hc/€? &~ 137 it follows that the quantum effects, namely the pair produc-
tion occurs at a distance that is 137 times more than the distance at which the
classical field singularities become relevant and when it becomes necessary to
modify classical theory, e.g. to introduce nonlinear terms in field equations.
Theory of gravity provides us with an opposite feature—“classical radius”
ry = 2Gym/c? appearing in the Schwarzschild’s metric (Dirac, 1976; Landau
and Lifshitz, 1962) greatly exceeds Compton wavelengtjyrq = 2m?/M3,
where the Planck masdp ~ 107° g. Therefore in describing the motion of bod-
ies withm > Mp it is vital to consider the exact classical equations of motion
(Einstein’s nonlinear equations)—quantum effects are negligible at this scale. The
self-interaction plays a decisive role in describing basic phenomena of light de-
flection or precession of perihelion of planetary motion (Dirac, 1976; Landau and
Lifshitz, 1962). This features of a motion instatic gravitational field cannot be
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described by (28)—thel§ term” is absent for a static source. Therefore, figds
andB, describing gravitational interaction of a moving object in a linear approxi-
mation, can be treated only as an effective fields and the limitation of our approach
manifests itself in degrees of freedom: 6 componenﬁ;mﬁdb’ of course are not
enough to describe the degrees of freedom of a gravitational field.

Despite that the relevancy of the linear approximation is questionable, ap-
proximation (28) can be still useful for describing interaction of moving bodies:
from General Relativity it follows that the exact expression for the force exerted on
point particle moving in an external stationary field is given by expression similar
to (28) (Landau and Lifshitz, 1962):

F=-mcv Inyv=goo+ mcy—gooV x curl G, (29)

whereG, = —0.0/900, « Stands for a spatial part of metric agg, is a metric
tensor. Whergg = —1 — 2d/c?, whered is a scalar potentiakp/c? « 1, the

first terms of the r.h.s. of (29) is the same as the first term of the r.h.s. of (28). To
reproduce the second term of (28) which includes the ficlthat is to expres§

in terms ofg,,, it would be necessary to solve Einstein’s equations. Atthe moment,
we know of no solutions for the Einstein’s equations for Experiments 1 and 2, but
based on our phenomenological consideration we believe that the equation similar
to (28) can be derived from the equations of General Relativity.

Let us note that though fieldg and B satisfy wave equations (27), they do
not transform as an antisymmetric tensor of rank 2, i.e. they do not transform
as the electromagnetic field,, ~ (E, I-T). If one attempts to postulate that the
exactexpression for the force acting on a test particle is given by (28) or (29)
then it turns out that in order to maintain expression (28) figldad transform
like nontensor quantities (Dirac, 1976). This is the price one has to pay when
attempting to describe gravitational interaction in terms of six degrees of freedom.
The nontensor feature of transformation is most transparent from (29): identifying
g with the first term of r.h.s. of (29) it follows that at* — x* + £#(x) in the
expression for the transformegcthere arises extra term

P gMO dEH
5900 = 3 (S5 ) In =G (30)

ox!

which cannot be compensated by the transformation Bteetm” of (29). There-
fore EqQ. (28) cannot hold in any reference frame,dnyvelocities. In Einstein’s
equations extra terms similar to (30) are compensated by coordinate transforma-
tions of General Relativity and as a result, equations of gravitational field and the
requirement of general covariance form a self consistent mathematical scheme
(Dirac, 1976; Landau and Lifshitz, 1962).

In approximation used in this paper (linearized equations and lowest order in
v2/c?) fields g and3 transform as€ andH . This statement is true only in lowest
order inv?/c?. Straightforward calculation shows that (8) and (16) transform
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exactly asE andH transform in the lowest order Wt /c?. Since the field§ andB
are defined in the framework of this approximation, the description based on (28)
and (26) is self-consistent in the linear approximation and up to higher orders
inv2/c2.

Aswe already have mentionejhndB are effective fields, even from the point
of view of classical theory. Nevertheless, Eq. (28) can be applied to a rather wide
class of phenomena in problem of describing the motion in external gravitational
field after the fieldgj andB are known. The advantage of using (28) and (26) is in
their simplicity in comparison with the problem of solving equations of General
Relativity.
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